Single-pulse real-time billion-frames-per-second planar imaging of ultrafast nanoparticle-laser dynamics and temperature in flames

  • Arthur, J. R., Kapur, P. K. & Napier, D. H. Carbonaceous deposits from hydrocarbon diffusion flames. Nature 169, 372–373 (1952).

    Article 
    ADS 

    Google Scholar
     

  • Mills, E. The specter of fuel-based lighting. Science 308, 1263–1264 (2005).

    Article 

    Google Scholar
     

  • Ramanathan, V. & Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 1, 221–227 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Apple, J. et al. Characterization of particulate matter size distributions and indoor concentrations from kerosene and diesel lamps. Indoor Air 20, 399–411 (2010).

    Article 

    Google Scholar
     

  • Zhang, X. L., Chen, X. & Wang, J. A number-based inventory of size-resolved black carbon particle emissions by global civil aviation. Nat. Commun. 10, 534 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Pokhrel, A. K. et al. Tuberculosis and indoor biomass and kerosene use in Nepal: a case control study. Environ. Health Perspect. 118, 558–564 (2010).

    Article 

    Google Scholar
     

  • Bond, T. C. et al. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse. Atmos. Chem. Phys. 11, 1505–1525 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Park, E. J. et al. PM 2.5 collected in a residential area induced Th1-type inflammatory responses with oxidative stress in mice. Environ. Res. 111, 348–355 (2011).

    Article 

    Google Scholar
     

  • Seaton, A. et al. Particulate air pollution and acute health effects. Lancet 345, 176–178 (1995).

    Article 

    Google Scholar
     

  • Zhang, R. Y. et al. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc. Natl Acad. Sci. USA 105, 10291–10296 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Kim, K. H. et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60, 71–80 (2013).

    Article 

    Google Scholar
     

  • Mauter, M. S. & Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42, 5843–5859 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Liu, C. et al. Flame-formed carbon nanoparticles exhibit quantum dot behaviors. Proc. Natl Acad. Sci. USA 116, 12692–12697 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Khodabakhshi, S., Fulvio, P. F. & Andreoli, E. Carbon black reborn: structure and chemistry for renewable energy harnessing. Carbon 162, 604–649 (2020).

    Article 

    Google Scholar
     

  • Yetter, R. A., Risha, G. A. & Son, S. F. Metal particle combustion and nanotechnology. Proc. Combust. Inst. 32, 1819–1838 (2009).

    Article 

    Google Scholar
     

  • Guo, C. F. et al. Metallic nanostructures for light trapping in energy-harvesting devices. Light Sci. Appl. 3, e161 (2014).

    Article 

    Google Scholar
     

  • Allamandola, L. J., Sandford, S. A. & Wopenka, B. Interstellar polycyclic aromatic hydrocarbons and carbon in interplanetary dust particles and meteorites. Science 237, 56–59 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Johansson, K. O. et al. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 361, 997–1000 (2018).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Martin, J. W., Salamanca, M. & Kraft, M. Soot inception: carbonaceous nanoparticle formation in flames. Prog. Energy Combust. Sci. 88, 100956 (2022).

    Article 

    Google Scholar
     

  • Richter, H. & Howard, J. B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog. Energy Combust. Sci. 26, 565–608 (2000).

    Article 

    Google Scholar
     

  • Mercier, X. et al. Dimers of polycyclic aromatic hydrocarbons: the missing pieces in the soot formation process. Phys. Chem. Chem. Phys. 21, 8282–8294 (2019).

    Article 

    Google Scholar
     

  • Martin, J. W. et al. π-Diradical Aromatic soot precursors in flames. J. Am. Chem. Soc. 143, 12212–12219 (2021).

    Article 

    Google Scholar
     

  • Meyer, T. R. et al. High-speed, three-dimensional tomographic laser-induced incandescence imaging of soot volume fraction in turbulent flames. Opt. Express 24, 29547–29555 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y. et al. Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging. Opt. Lett. 43, 5363–5366 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kohse-Höinghaus, K. et al. Combustion at the focus: laser diagnostics and control. Proc. Combust. Inst. 30, 89–123 (2005).

    Article 

    Google Scholar
     

  • Ehn, A. et al. Fluorescence lifetime imaging in a flame. Proc. Combust. Inst. 33, 807–813 (2011).

    Article 

    Google Scholar
     

  • Michelsen, H. A. Laser-induced incandescence of flame-generated soot on a picosecond time scale. Appl. Phys. B 83, 443 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Michael, J. B. et al. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames. Appl. Opt. 54, 3331–3344 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Michelsen, H. A. et al. Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms. Appl. Opt. 42, 5577–5590 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Vander Wal, R. L., Jensen, K. A. & Choi, M. Y. Simultaneous laser-induced emission of soot and polycyclic aromatic hydrocarbons within a gas-jet diffusion flame. Combust. Flame 109, 399–414 (1997).

    Article 

    Google Scholar
     

  • Ossler, F. et al. Two-dimensional visualization of fluorescence lifetimes by use of a picosecond laser and a streak camera. Appl. Opt. 37, 2303–2314 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Ossler, F., Agrup, S. & Aldén, M. Three-dimensional flow visualization with picosecond Mie scattering and streak-camera detection. Appl. Opt. 34, 537–540 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Gao, L. et al. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature 516, 74–77 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wang, P., Liang, J. Y. & Wang, L. V. Single-shot ultrafast imaging attaining 70 trillion frames per second. Nat. Commun. 11, 2091 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Liang, J. Y. et al. Single-shot stereo-polarimetric compressed ultrafast photography for light-speed observation of high-dimensional optical transients with picosecond resolution. Nat. Commun. 11, 5252 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Fan, L. R. et al. Real-time observation and control of optical chaos. Sci. Adv. 7, eabc8448 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kim, T. et al. Picosecond-resolution phase-sensitive imaging of transparent objects in a single shot. Sci. Adv. 6, eaay6200 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. D. et al. Ultrafast and hypersensitive phase imaging of propagating internodal current flows in myelinated axons and electromagnetic pulses in dielectrics. Nat. Commun. 13, 5247 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kychakoff, G. et al. Visualization of turbulent flame fronts with planar laser-induced fluorescence. Science 224, 382–384 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Wang, L. et al. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate. Science 253, 769–771 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Alfano, R. R. et al. Time-resolved imaging of translucent droplets in highly scattering turbid media. Science 264, 1913–1915 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Galland, P. A. et al. Time-resolved optical imaging of jet sprays and droplets in highly scattering medium. ASME HTD 321, 585–588 (1995).


    Google Scholar
     

  • Leah, A. S. & David, W. T. A bunsen flame as a column of luminous gas. Nature 161, 524–524 (1948).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. et al. LIF diagnostics for selective and quantitative measurement of PAHs in laminar premixed flames. Combust. Flame 222, 5–17 (2020).

    Article 

    Google Scholar
     

  • Liu, P. et al. The diagnostics of laser-induced fluorescence (LIF) spectra of PAHs in flame with TD-DFT: special focus on five-membered ring. J. Phys. Chem. A 119, 13009–13017 (2015).

    Article 

    Google Scholar
     

  • Dobbins, R. A. & Megaridis, C. M. Absorption and scattering of light by polydisperse aggregates. Appl. Opt. 30, 4747–4754 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Will, S., Schraml, S. & Leipert, A. Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII). Symp. Int. Combust. 26, 2277–2284 (1996).

    Article 

    Google Scholar
     

  • Michelsen, H. A. et al. Laser-induced incandescence: particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51, 2–48 (2015).

    Article 

    Google Scholar
     

  • Will, S., Schraml, S. & Leipertz, A. Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence. Opt. Lett. 20, 2342–2344 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Sun, Z. W. et al. Single-shot, time-resolved planar laser-induced incandescence (TiRe-LII) for soot primary particle sizing in flames. Proc. Combust. Inst. 35, 3673–3680 (2015).

    Article 

    Google Scholar
     

  • Verdugo, I. et al. Candle flame soot sizing by planar time-resolved laser-induced incandescence. Sci. Rep. 10, 11364 (2020).

    Article 

    Google Scholar
     

  • Berlman, I. Handbook of florescence spectra of aromatic molecules (New York: Academic Press, 1971).

  • Ni, T., Gupta, S. B. & Santoro, R. J. Suppression of soot formation in ethene laminar diffusion flames by chemical additives. Symp. Int. Combust. 25, 585–592 (1994).

    Article 

    Google Scholar
     

  • Chorey, D. et al. 3D mapping of polycyclic aromatic hydrocarbons, hydroxyl radicals, and soot volume fraction in sooting flames using FRAME technique. Appl. Phys. B 127, 147 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Liu, F. et al. Sensitivity and relative error analyses of soot temperature and volume fraction determined by two-color LII. Appl. Phys. B 96, 623–636 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Tian, B. et al. Planar 2-color time-resolved laser-induced incandescence measurements of soot in a diffusion flame. Aerosol Sci. Technol. 51, 1345–1353 (2017).

    Article 
    ADS 

    Google Scholar
     

  • De Iuliis, S., Cignoli, F. & Zizak, G. Two-color laser-induced incandescence (2C-LII) technique for absolute soot volume fraction measurements in flames. Appl. Opt. 44, 7414–7423 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Reimann, J., Kuhlmann, S. A. & Will, S. 2D aggregate sizing by combining laser-induced incandescence (LII) and elastic light scattering (ELS). Appl. Phys. B 96, 583–592 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Mannazhi, M., Bergqvist, S. & Bengtsson, P. E. Laser-induced fluorescence for studying the influence of potassium and sodium salts on PAH formation in sooting premixed flames. Appl. Phys. B 128, 68 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Commodo, M. et al. Fluorescence anisotropy in a diffusion flame to shed light in the “dark region”. Proc. Combust. Inst. 34, 1845–1852 (2013).

    Article 

    Google Scholar
     

  • Apicella, B. et al. Laser-induced structural modifications of differently aged soot investigated by HRTEM. Combust. Flame 204, 13–22 (2019).

    Article 

    Google Scholar
     

  • Li, H. L. et al. Sensing combustion intermediates by femtosecond filament excitation. Opt. Lett. 38, 1250–1252 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ju, Y. G. & Sun, W. T. Plasma assisted combustion: dynamics and chemistry. Prog. Energy Combust. Sci. 48, 21–83 (2015).

    Article 

    Google Scholar
     

  • Lucht, R. P. et al. Two-photon-excited fluorescence measurement of hydrogen atoms in flames. Opt. Lett. 8, 365–367 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Ruchkina, M. et al. Single-shot, spatially-resolved stand-off detection of atomic hydrogen via backward lasing in flames. Proc. Combust. Inst. 37, 1281–1288 (2019).

    Article 

    Google Scholar
     

  • Inada, N. et al. Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Protoc. 14, 1293–1321 (2019).

    Article 

    Google Scholar
     

  • Jiang, F. et al. Experimental study on measurement of flame temperature distribution using the two-color method. J. Therm. Sci. 11, 378–382 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Bataller, A. et al. Blackbody emission from laser breakdown in high-pressure gases. Phys. Rev. Lett. 113, 075001 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Glumac, N., Elliott, G. & Boguszko, M. Temporal and spatial evolution of a laser spark in air. AIAA J. 43, 1984–1994 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Barber, B. P. & Putterman, S. J. Observation of synchronous picosecond sonoluminescence. Nature 352, 318–320 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Flannigan, D. J. & Suslick, K. S. Plasma formation and temperature measurement during single-bubble cavitation. Nature 434, 52–55 (2005).

    Article 
    ADS 

    Google Scholar
     


  • Source link

    About KIRANMOH94

    Check Also

    The SEC is trying to freeze Binance’s assets

    The Securities and Exchange Commission is trying to freeze the assets of Binance, the world’s …

    Leave a Reply

    Your email address will not be published. Required fields are marked *